Chapter 5 and 6

Section 2: Subspaces

(book sections 5.1 and 6.2)

Ideas in this section...

- 1) Definition of a <u>subspace</u> of a vector space
- 2) How to prove that a subset of a vector space IS a subspace
- 3) How to prove that a subset of a vector space IS NOT a subspace

<u>Def</u>: If *V* is a vector space, a nonempty subset $U \subseteq V$ is a <u>subspace</u> of *V* if *U* is itself a vector space under the addition and scalar multiplication rule inherited from *V*.

<u>Note</u>: This means that U satisfies the 10 vector space properties.

<u>Thm 6.2.1</u> Subspace Test: A subset U of a vector space V is a subspace if 1) $U \neq \emptyset$

- 2) U is closed under the vector addition rule of V
- 3) U is closed under the scalar multiplication rule of V

Axioms for vector addition modify to U

- A1. If \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- A2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all \mathbf{u} and \mathbf{v} in V.
- A3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for all \mathbf{u} , \mathbf{v} , and \mathbf{w} in V.
- A4. An element **0** in V exists such that $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$ for every \mathbf{v} in V.
- A5. For each v in V, an element -v in V exists such that -v + v = 0 and v + (-v) = 0.

Axioms for scalar multiplication

- S1. If **v** is in V, then $a\mathbf{v}$ is in V for all a in \mathbb{R} .
- S2. $a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$ for all \mathbf{v} and \mathbf{w} in V and all a in \mathbb{R} .
- *S3.* $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$ for all \mathbf{v} in V and all a and b in \mathbb{R} .
- *S4.* $a(b\mathbf{v}) = (ab)\mathbf{v}$ for all \mathbf{v} in V and all a and b in \mathbb{R} .
- *S5.* $1\mathbf{v} = \mathbf{v}$ for all \mathbf{v} in *V*.

Once A1 and S1 are proved for U, all others follow bec. $U \subseteq V$ except A4 and A5

- <u>Thm 6.2.1</u> Subspace Test: A subset *U* of a vector space *V* is a subspace if 1) $U \neq \emptyset$
- 2) U is closed under the vector addition rule of V
- 3) U is closed under the scalar multiplication rule of V

A4. An element **0** in V exists such that $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$ for every \mathbf{v} in V. modify to U <u>Proof of A4:</u>

- <u>Thm 6.2.1</u> Subspace Test: A subset *U* of a vector space *V* is a subspace if 1) $U \neq \emptyset$
- 2) U is closed under the vector addition rule of V
- 3) U is closed under the scalar multiplication rule of V

modify to U

A5. For each **v** in V, an element $-\mathbf{v}$ in V exists such that $-\mathbf{v} + \mathbf{v} = \mathbf{0}$ and $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$. <u>Proof of A5:</u>

<u>Result</u>: If *U* is a subspace of *V*, then the zero vector $\vec{0}$ from *V* must be in *U*.

Note:

- So if the zero vector $\vec{0}$ from V is not in U, then U cannot be a subspace of V
- This gives you a quick way to check that U is not be a subspace of V
- But this doesn't work all the time

<u>Ex 1</u>: $\{\vec{0}\}$ and *V* are subspaces of *V*

<u>Ex 2</u>: If $\vec{v} \in V$, $U = \{ c\vec{v} \mid c \in \mathbb{R} \}$ is a subspace of V

Ex 3: Show that $U = \{ (a, b, c, d) \mid a + b + c = 0, d = 2a, a, b, c, d \in \mathbb{R} \}$ is a subspace of \mathbb{R}^4

<u>Ex 3</u>: Show that $U = \{ (a, b, c, d) \mid a + b + c = 0, d = 2a, a, b, c, d \in \mathbb{R} \}$ is a subspace of \mathbb{R}^4

<u>Ex 3 variation 1</u>: $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a + b + c = 0, d = 2a, a, b, c, d \in \mathbb{R} \right\}$ is a subspace of M_{22}

Ex 3 variation 2: $U = \{a + bx + cx^2 + dx^3 | a + b + c = 0, d = 2a, a, b, c, d \in \mathbb{R}\}$ is a subspace of P_3

<u>Ex 4</u>: Show that $U = \{ (x_1, 2x_1 - x_2, x_1 + x_2) \mid x_1, x_2 \in \mathbb{R} \}$ is a subspace of \mathbb{R}^3

Subspace of a Vector Space <u>Ex 5</u>: Show that $U = \{ (t, t, t+1) | t \in \mathbb{R} \}$ is not a subspace of \mathbb{R}^3 Subspace of a Vector Space <u>Ex 6</u>: Show that $U = \{ (t^2, 4t) | t \in \mathbb{R} \}$ is not a subspace of \mathbb{R}^2 Subspace of a Vector Space $\underline{\text{Ex 7}}$: Show that $U = \{ (a, b) | 2a - 5b = 1, a, b \in \mathbb{R} \}$ is not a subspace of \mathbb{R}^2

<u>Ex 8</u>: Let *A* be a fixed matrix in M_{nn} . Show that $U = \{ X \in M_{nn} | AX = XA \}$ is a subspace of M_{nn}

Ex 9: Consider the set *U* of all polynomials that have the number 3 as a root. $U = \{ p(x) \in P \mid p(3) = 0 \}$

Show that U is a subspace of P

<u>Ex 10</u>: P_n is a subspace of P for each $n \ge 0$ Nothing to show

Ex 11: Show that D[a, b] which is the set of all differentiable functions defined on [a, b] is a subspace of the vector space F[a, b] of all functions defined on [a, b]

What you need to know from the book

Book reading

Section 5.1 pages 263 - 264 Section 6.2 pages 338 - 341

Problems you need to know how to do from the book

Section 5.1 page 269 #'s 1, 6, 15, 16abce, 17, 19, 20 Section 6.2 page 343 #'s 1 - 5, 22 - 23